Homework 1, due 2/1

Only your four best solutions will count towards your grade.

1. Consider the power series

$$f(z_1, z_2) = \sum_{k=0}^{\infty} z_1^k z_2^k.$$

- (a) Find the region in \mathbf{C}^2 where the power series converges.
- (b) Find an analytic continuation of f to a larger domain.
- 2. Let $U \subset \mathbf{C}^n$ be open, and $f : U \setminus \mathbf{C}^{n-2} \to \mathbf{C}$ be holomorphic, where $\mathbf{C}^{n-2} \subset \mathbf{C}^n$ is a coordinate subspace. Show that f extends to a holomorphic function $\tilde{f} : U \to \mathbf{C}$.
- 3. Let $f : \mathbf{C}^n \to \mathbf{C}$ be holomorphic, with n > 1. Show that $f^{-1}(0)$ cannot be contained in a bounded set of \mathbf{C}^n if it is non-empty.
- 4. Let $f: U \to \mathbb{C}^n$, where $U \subset \mathbb{C}^m$ and $m \leq n$. Suppose that $J(f)(z_0)$ has rank m at some $z_0 \in U$. Show that there is a neighborhood V of $f(z_0)$ and a biholomorphism $h: V \to V'$ for some $V' \subset \mathbb{C}^n$ such that

$$h(f(z_1,\ldots,z_m)) = (z_1,\ldots,z_m,0,\ldots,0),$$

for $(z_1,\ldots,z_m) \in V$.

5. Let p(z) be a polynomial with p(0) = p'(0) = 0. Consider the map

$$F(z_1, z_2) = (z_2, -2z_1 - p(z_2)).$$

Show that $F: \mathbf{C}^2 \to \mathbf{C}^2$ is a biholomorphism with Jacobian

$$A = J(F)(0) = \begin{bmatrix} 0 & 1\\ -2 & 0 \end{bmatrix}$$

at the origin.

- 6. In the notation of the previous question,
 - (a) Define the set $U = \{z \in \mathbf{C}^2 : F^{-n}(z) \to 0 \text{ as } n \to \infty\}$, and show that we can define a biholomorphism $G : \mathbf{C}^2 \to U$ as follows: for z close to 0 we define G(z) by the formula

$$G(z) = \lim_{n \to \infty} F^n(A^{-n}(z)),$$

and extend G to all of \mathbf{C}^2 using the identity $G \circ A = F \circ G$.

(b) Suppose that we also have p(1) = -3, p'(1) = 0. Show that then (1, 1) is a fixed point of F and U omits a neighborhood of (1, 1). So G defines a biholomorphism between \mathbb{C}^2 and a subset U of \mathbb{C}^2 omitting an open set.