Homework 1, due 2/1
Only your four best solutions will count towards your grade.

1. Consider the power series

$$
f\left(z_{1}, z_{2}\right)=\sum_{k=0}^{\infty} z_{1}^{k} z_{2}^{k}
$$

(a) Find the region in \mathbf{C}^{2} where the power series converges.
(b) Find an analytic continuation of f to a larger domain.
2. Let $U \subset \mathbf{C}^{n}$ be open, and $f: U \backslash \mathbf{C}^{n-2} \rightarrow \mathbf{C}$ be holomorphic, where $\mathbf{C}^{n-2} \subset \mathbf{C}^{n}$ is a coordinate subspace. Show that f extends to a holomorphic function $\tilde{f}: U \rightarrow \mathbf{C}$.
3. Let $f: \mathbf{C}^{n} \rightarrow \mathbf{C}$ be holomorphic, with $n>1$. Show that $f^{-1}(0)$ cannot be contained in a bounded set of \mathbf{C}^{n} if it is non-empty.
4. Let $f: U \rightarrow \mathbf{C}^{n}$, where $U \subset \mathbf{C}^{m}$ and $m \leq n$. Suppose that $J(f)\left(z_{0}\right)$ has rank m at some $z_{0} \in U$. Show that there is a neighborhood V of $f\left(z_{0}\right)$ and a biholomorphism $h: V \rightarrow V^{\prime}$ for some $V^{\prime} \subset \mathbf{C}^{n}$ such that

$$
h\left(f\left(z_{1}, \ldots, z_{m}\right)\right)=\left(z_{1}, \ldots, z_{m}, 0, \ldots, 0\right)
$$

for $\left(z_{1}, \ldots, z_{m}\right) \in V$.
5. Let $p(z)$ be a polynomial with $p(0)=p^{\prime}(0)=0$. Consider the map

$$
F\left(z_{1}, z_{2}\right)=\left(z_{2},-2 z_{1}-p\left(z_{2}\right)\right)
$$

Show that $F: \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ is a biholomorphism with Jacobian

$$
A=J(F)(0)=\left[\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right]
$$

at the origin.
6. In the notation of the previous question,
(a) Define the set $U=\left\{z \in \mathbf{C}^{2}: F^{-n}(z) \rightarrow 0\right.$ as $\left.n \rightarrow \infty\right\}$, and show that we can define a biholomorphism $G: \mathbf{C}^{2} \rightarrow U$ as follows: for z close to 0 we define $G(z)$ by the formula

$$
G(z)=\lim _{n \rightarrow \infty} F^{n}\left(A^{-n}(z)\right)
$$

and extend G to all of \mathbf{C}^{2} using the identity $G \circ A=F \circ G$.
(b) Suppose that we also have $p(1)=-3, p^{\prime}(1)=0$. Show that then $(1,1)$ is a fixed point of F and U omits a neighborhood of $(1,1)$. So G defines a biholomorphism between \mathbf{C}^{2} and a subset U of \mathbf{C}^{2} omitting an open set.

